The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity.
نویسندگان
چکیده
Roberts syndrome/SC phocomelia (RBS) is an autosomal recessive disorder with growth retardation, craniofacial abnormalities and limb reduction. Cellular alterations in RBS include lack of cohesion at the heterochromatic regions around centromeres and the long arm of the Y chromosome, reduced growth capacity, and hypersensitivity to DNA damaging agents. RBS is caused by mutations in ESCO2, which encodes a protein belonging to the highly conserved Eco1/Ctf7 family of acetyltransferases that is involved in regulating sister chromatid cohesion. We identified 10 new mutations expanding the number to 26 known ESCO2 mutations. We observed that these mutations result in complete or partial loss of the acetyltransferase domain except for the only missense mutation that occurs in this domain (c.1615T>G, W539G). To investigate the mechanism underlying RBS, we analyzed ESCO2 mutations for their effect on enzymatic activity and cellular phenotype. We found that ESCO2 W539G results in loss of autoacetyltransferase activity. The cellular phenotype produced by this mutation causes cohesion defects, proliferation capacity reduction and mitomycin C sensitivity equivalent to those produced by frameshift and nonsense mutations associated with decreased levels of mRNA and absence of protein. We found decreased proliferation capacity in RBS cell lines associated with cell death, but not with increased cell cycle duration, which could be a factor in the development of phocomelia and cleft palate in RBS. In summary, we provide the first evidence that loss of acetyltransferase activity contributes to the pathogenesis of RBS, underscoring the essential role of the enzymatic activity of the Eco1p family of proteins.
منابع مشابه
The non-redundant function of cohesin acetyltransferase Esco2: some answers and new questions.
Cohesin and cohesin regulatory proteins function in an essential pathway enabling proper cohesion and segregation of sister chromatids. Additionally, these proteins are involved in double-strand break (DSB) repair and transcriptional regulation. Mutations in Establishment of cohesion 1 homolog 2 (Esco2), an evolutionary conserved cohesin acetyltransferase, are the cause of Roberts syndrome (RBS...
متن کاملThe Cellular Phenotype of Roberts Syndrome Fibroblasts as Revealed by Ectopic Expression of ESCO2
Cohesion between sister chromatids is essential for faithful chromosome segregation. In budding yeast, the acetyltransferase Eco1/Ctf7 establishes cohesion during DNA replication in S phase and in response to DNA double strand breaks in G2/M phase. In humans two Eco1 orthologs exist: ESCO1 and ESCO2. Both proteins are required for proper sister chromatid cohesion, but their exact function is un...
متن کاملEsco2 regulates cx43 expression during skeletal regeneration in the zebrafish fin.
BACKGROUND Roberts syndrome (RBS) is a rare genetic disorder characterized by craniofacial abnormalities, limb malformation, and often severe mental retardation. RBS arises from mutations in ESCO2 that encodes an acetyltransferase and modifies the cohesin subunit SMC3. Mutations in SCC2/NIPBL (encodes a cohesin loader), SMC3 or other cohesin genes (SMC1, RAD21/MCD1) give rise to a related devel...
متن کاملCohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome
Robert syndrome (RBS) and Cornelia de Lange syndrome (CdLS) are human developmental disorders characterized by craniofacial deformities, limb malformation and mental retardation. These birth defects are collectively termed cohesinopathies as both arise from mutations in cohesion genes. CdLS arises due to autosomal dominant mutations or haploinsufficiencies in cohesin subunits (SMC1A, SMC3 and R...
متن کاملCohesin acetyltransferase Esco2 regulates SAC and kinetochore functions via maintaining H4K16 acetylation during mouse oocyte meiosis
Sister chromatid cohesion, mediated by cohesin complex and established by the acetyltransferases Esco1 and Esco2, is essential for faithful chromosome segregation. Mutations in Esco2 cause Roberts syndrome, a developmental disease characterized by severe prenatal retardation as well as limb and facial abnormalities. However, its exact roles during oocyte meiosis have not clearly defined. Here, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 17 14 شماره
صفحات -
تاریخ انتشار 2008